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A B S T R A C T

Knee osteoarthritis (OA) causes pain, reduced muscular strength and stiffness of the affected joint. In response,

the motor control mechanism is altered, potentially compromising stability during acts of daily living. Reduced

walking stability can be quantified in terms of gait variability. This study therefore aimed to identify and

quantify the effects of knee arthritis on gait variability. Fifty adults (25 males/25 females) with end-stage OA of

the knee sufficiently symptomatic to require joint replacement, walked on a self-paced treadmill for 2 min. A

motion capture system was used to record 50 consecutive gait cycles from each patient. Kinematic variability of

gait was analysed using the uncontrolled manifold technique (UCM). The position of the centre of mass (COM)

was chosen as the task variable for the analysis. Results showed that our patient cohort were able to maintain a

stable COM whilst walking, through adopting variable combinations of hip, knee and ankle kinematics. The

greatest magnitudes of instability (based on the UCM ratios) occurred during initial contact and terminal stance.

Active extension of the knee joint to approximately 5° is required during these gait cycle events, meaning that

these gait events are highly quadriceps dependent. This study identified and quantified components of the gait

cycle where patients with knee OA are most unstable. Employment of this technique could therefore allow

specific personalised prescription for prehabilitation and rehabilitation.

1. Introduction

Approximately 23% of people over the age of 60 suffer from knee

osteoarthritis (OA) [1]. Knee OA is a degenerative joint disease which

causes pain, reduced muscular strength and limited function to the af-

fected joint [2,3]. Consequently, patients suffering from late- to end-

stage OA become limited in their mobility [1].

Koyama and colleagues stated recently that increased stiffness of the

joint coupled with reduced muscular strength alters the motor control

mechanism, ultimately compromising stability [4]. Stability can be

quantified in terms of gait variability [5–7]. Although having a variable

gait is natural, the extent of variability and the patterns observed in

variability have been found to differ in those suffering from OA [5,8,9].

This could affect their ability to react to perturbations, potentially in-

creasing the risk of falling and limiting the extent and speed of activity

the patient feels safe to undertake [7,10,11].

Given the complexity of gait, there are limited ways in which re-

searchers and clinicians can objectively assess its overall variability

from cycle-to-cycle [7,12,13]. Recent studies have used a method

known as the uncontrolled manifold (UCM) hypothesis to investigate

the relationship between motor control and variability in gait [14–16].

The populations in the studies by Papi et al.[14] and Black et al. [15]

were stroke survivors and pre-adolescents with and without Down

syndrome, respectively.

In these studies, the UCM method quantified the combinations of

elemental variables (joint degrees of freedom) that successfully stabi-

lised the centre of mass (COM):‘good variability’, and those which

compromised the stability of the COM: ‘bad variability’ [14,15]. Here,

stabilisation of the COM refers to the ability of the elemental variables

to maintain a consistent mean COM position over numerous trials,

despite showing inter-trial variability. Combinations of elemental

variables that lead to a deviation of the COM away from its mean po-

sition compromise COM stability. Kinematic synergy was found to exist

in each population in these studies, meaning that the ‘good variability’

(variance within the UCM) outweighed the ‘bad variability’ (variance

orthogonal to the UCM) [14,15]. However, variability was increased

compared to normal, implying that the central nervous system had

employed a more variable gait in order to maintain a stable COM

during walking. This strategy is believed to reduce COM instability,

but to leave the subject more vulnerable to external or internal
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therefore prevent the COM from moving too far laterally. It could also

be a pain-avoidance mechanism, adopted by those with predominantly

medial knee OA, as was the case in this sample, where 70% had a varus

knee deformity. Although this study identified patients with valgus and

varus knee deformities, the differences in gait variability between both

groups were not investigated due to the small size of the valgus group.

Future work will expand on this study to address this limitation.

Despite the fact that frontal plane ratios were relatively consistent

throughout the gait cycle (Fig. 3), slightly higher ratios were detected

during mid-stance and initial swing phases, suggesting that a higher

degree of variance was beneficial in stabilising the COM mediolaterally.

In general, more kinematic variability was exhibited in the sagittal

plane than frontal the plane, suggesting that a higher degree of varia-

bility was employed during gait to maintain a stable COM in this plane

in our population. Some of this kinematic variability may be explained

by the freedom of the patients to alter their walking speed during trials.

However, given that walking speed naturally fluctuates, we are con-

fident that the data presented here is a better representation of gait

variability than if we had imposed a fixed walking speed on the pa-

tients.

Given the novelty of this study, our data cannot be compared di-

rectly to previously published literature. However, our study did show

similarities to others that applied the UCM method to gait data [14,15].

As in our study, Papi et al. and Black et al. showed that kinematic sy-

nergy existed in stroke survivors and pre-adolescents with Down syn-

drome, suggesting that people with pathological gait were able to

maintain a stable COM through employing variable gait kinematics

[14,15]. Stroke survivors were on average shown to have higher sa-

gittal plane ratios during stance than knee OA patients, but OA patients

had greater stability at foot strike [14]. Pre-adolescents with Down

syndrome had similar ratios during foot strike to knee OA patients [15].

When compared to healthy older adults, knee OA patients were found

to have lower sagittal plane ratios during the stance phase of gait [14].

When devising our experimental protocol, we were aware of the

differences that arise in some biomechanical parameters between over-

ground and treadmill gait. We did not believe it appropriate to record

over-ground walking in this study as tens to hundreds of consecutive

cycles must be recorded to report gait variability. Hence, a large

amount of space and additional motion capture equipment would have

been required to record 50 consecutive cycles. To optimise our tread-

mill protocol, a long (2m) treadmill was used. This was deemed suitable

as short treadmill lengths have been ascribed to some of the differences

in biomechanical parameters of treadmill gait [26–28]. We are there-

fore confident that the methodology used in this study represented gait

variability in elderly OA individuals to the best ability.

One way in which our methodology could be improved in future is

by calculating each body segment COM with respect to its mass then

summating the results for a better representation of the COM.

5. Conclusion

A variable gait is employed to stabilise the centre of mass in patients

with OA of the knee. Kinematic synergy was confirmed in this popu-

lation. Weakness of the quadriceps is thought to decrease sagittal plane

stability in this patient cohort. This technique may allow specific per-

sonalised prescription for prehabilitation and rehabilitation of knee OA

patients.
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